
Human-Centred Technologies for the Common Good

A/Prof Haifeng Shen, Human-Centred Intelligent Learning & Software Technologies Research Lab (HilstLab), Peter Faber Business School

01 ABOUT HilstLab

03 OUR RECENT PROJECTS

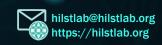
02 OUR APPROACH TO RESEARCH

ABOUT HilstLab

o Based in North Sydneyo Established in 2019

o 3 academic staffo 2 researcherso 2 PhD students

o A*: 3 o A*/A/Q1: 14

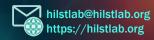


High Performance Computer • Deep Learning Workstation 55" Wall-mounted 4K Display

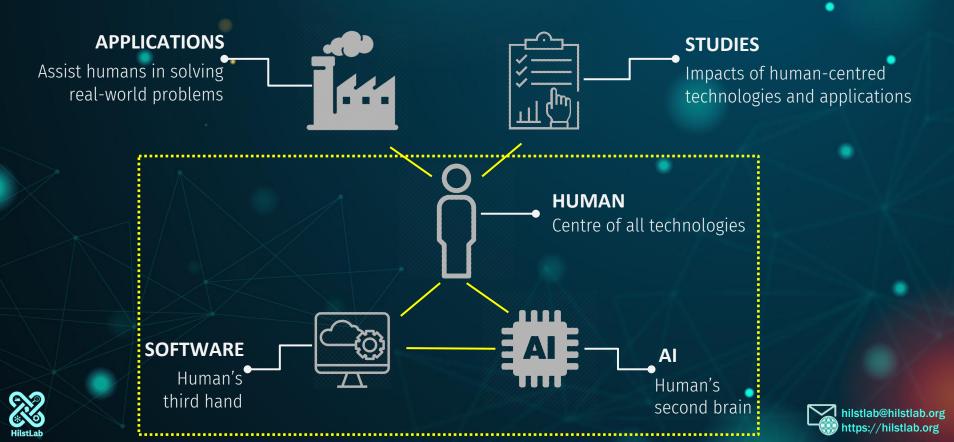
- Defense Science & Technology
- Catholic Social Services 0
- ACU ODVCR 0
- Faculty of Law and Business 0
- \$260,200 0

MEET THE TEAM

A/Prof Haifeng Shen



Dr Kewen Liao



Dr Maoying Qiao

OUR APPROACH TO RESEARCH

OUR APPROACH TO RESEARCH

HUMAN-CENTRED SOFTWARE

- User-centred design
- UI, UX, interaction design, groupware
- Human aspects of software engineering

HUMAN Centre of all technologies

HUMAN-CENTRED AI

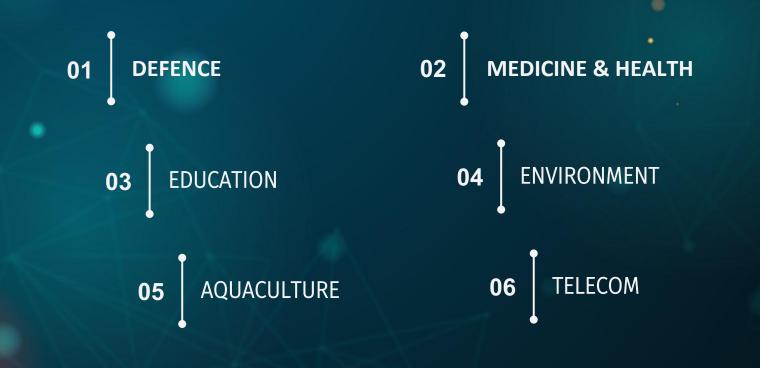
- Better AI models and algorithms
- Human-Al interactive sensemaking
- Human-Al partnership
- Al ethics, trust, security

SOFTWARE

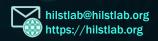
Human's third hand

AI-SOFTWARE INTEGRATION

- Intelligent software
- Intelligent software engineering


• Human's second brain

AI



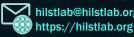
nilstlab@hilstlab.org nttps://hilstlab.org

OUR RECENT PROJECTS

DEFENSE

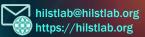
01

 Visualisation as a Service for time critical decision making, 2019-2020

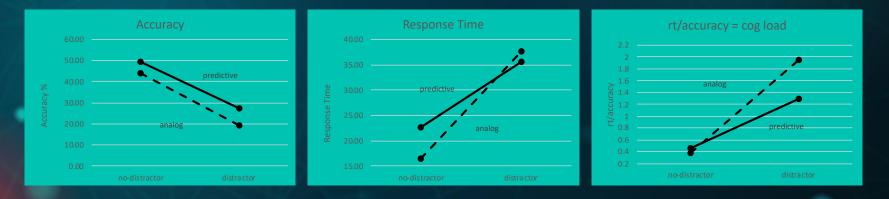


Human-Centred AI for Periscope Operator

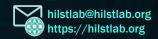
- Visually classify contacts and estimate range and course of contacts.
- High risk, time critical decision making process.
- Requires a high mental workload to achieve good performance.
- We developed a context-aware collaborative human-centred AI system to reduce cognitive load.



Simulator

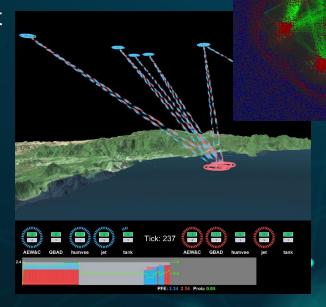


HilstLab



Pilot Result

- The AI-assisted system helped participants achieve both faster response times for all tasks and higher accuracy.
- In turn, measured (via eye tracker) and perceived (via survey) workload was reduced for those participants that used the AI-assisted system.



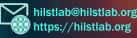
Visualisation as a Service

- High-fidelity visualisations are important for time critical decisionmaking.
- High-end graphic devices are not available in battlefields.
- We developed a technique for running graphics-intensive visualisations across multiple platforms.

iilstlab@hilstlab.org https://hilstlab.org

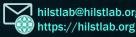
Containerisation and Virtualisation

- Visualisation applications are deployed in the cloud that provides the specific hardware and software resources required.
- Different containerised visualisation applications are custom-created to service the clients' devices.


nilstlab@hilstlab.org https://hilstlab.org

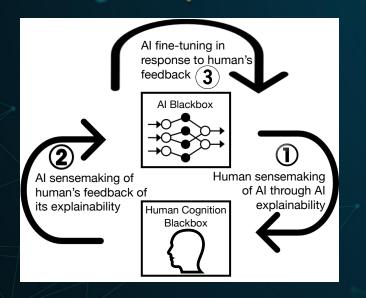
MEDICINE & HEALTH

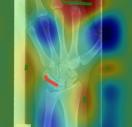
- Al attention guidance for improved orthopaedics radiographic fracture classification, 2020 ongoing
- A smartphone-based point-of-care quantitative urinalysis device for chronic kidney disease patients, 2015-2018



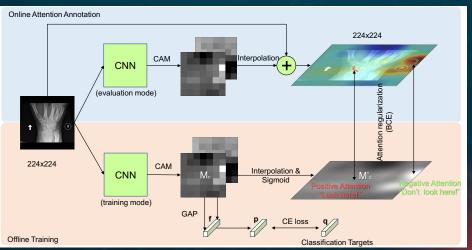
Fracture Diagnosis

- Fracture detection is a challenging task, representing up to 80% missed diagnosis in the ED.
- Mainly relies on X-ray and requires years of training and rich experience.
- Deep-learning AI has been used and performance is subject to the amount of training data.
- However facture diagnosis training data is scarce, thus requiring new technique.
- We developed an AI attention guidance technique to improve fracture detection accuracy



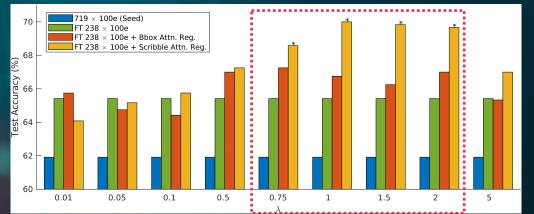


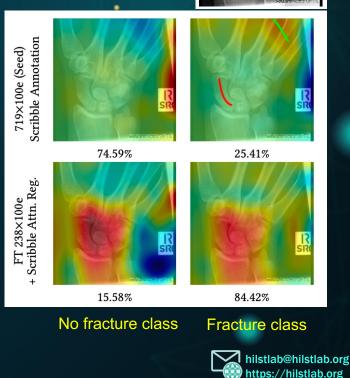

Attention Guidance through Human-Al Interactive Sensemaking



Attention Visualisation and AI Fine-Tuning

- We developed a browser-based network attention visualization tool for human-AI mutual sensemaking.
- User can upload images or a CSV file containing file paths.
- Al model fine-tunes itself to incorporate human feedback.



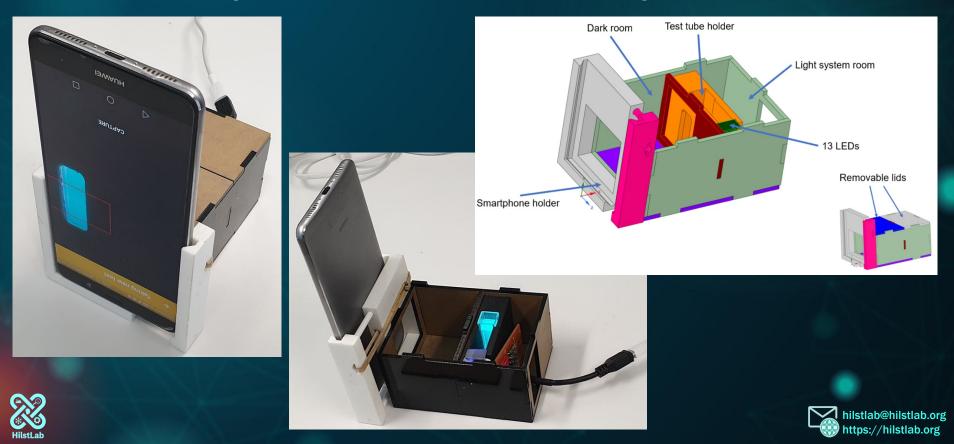


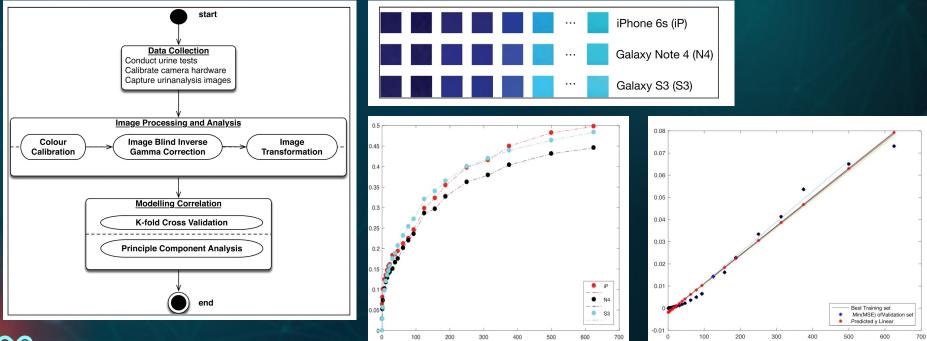
Experimental Validation

- Using a real-world scaphoid fracture dataset (1197 images from 300 patients) from Flinders Medical Centre.
- Al's performance is significantly improved after fine-tuning the AI to incorporate human's feedback.

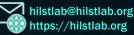
Chronic Kidney Disease (CKD) and Urinalysis

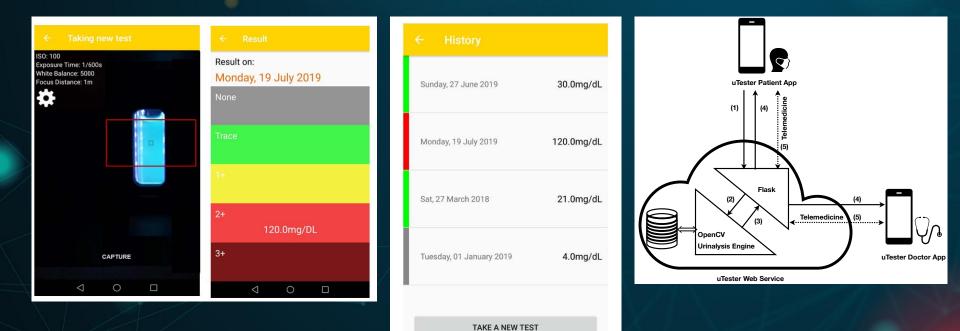
- CKD is a major health issue worldwide (7% world population).
- Urinalysis is a standard method for the identification of people at earlier time points (HSA in urine).
- Laboratory tests require bulky machines, trained skills, and long turnaround times.
- Point-of-care (POC) dipstick-based testing is more convenient but can only provide qualitative results.
- We developed a smartphone-based POC urinalysis device for full quantitative detection using nanomaterials.

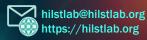




hilstlab@hilstlab.org https://hilstlab.org

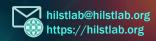

Smartphone-based POC Urinalysis Device


Correlation Between Urine HSA Concentration and Image Color Intensity

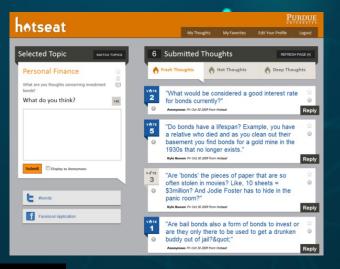

Smartphone-based POC Urinalysis Device

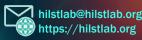
0

 \triangleleft

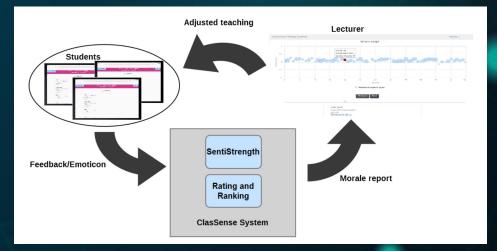


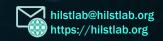
EDUCATION


 Sentiment analysis and morale visualisation in a digital backchannel system, 2017-2019


Challenge of Receiving Feedback from Audience

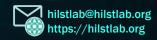
- Effectively connecting to a large audience is serious challenge.
- Backchannel systems are sometimes deployed to address this issue.
- They are not designed to immediately aggregate and present the audience's feedback to the presenter in a meaningful way that is easy to quickly digest.



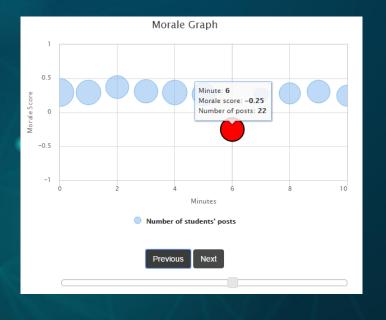

٠

Real-time Sentiment Analysis and Morale Visualisation

- We developed a new backchannel system ClasSense.
- Help a lecturer capture, process and respond to the large amount of students' posts effectively
- Get an overall picture of students' learning as well as their emotions and sentiments
- Trace back a summary of incidents in order to improve the lecturer's delivery and understanding of the students' comprehension level



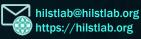
ClasSense Student Interface


Carrier 🗢 <	2:05 PM e.coffwedassense	Ċ	100%	
Back to main page	Welcome to Fundamentals of Computing You are logging in as student2		1 Logout	
	① Create a Post			
hard Posted at 60 minute by studen ≰0 0 ⊊≢ 0 Locturer response: Nii 0 Comment ≪	n			0
good on you Posted at 60 minute by studen ≰0 0 ♀ 0 Locturer response: Nil 0 Comment ≪	n			
helpful Posted at 60 minute by studen ∎ ⁰ 0 ⊂ ¹ 0 Lecturer response: Nil 0 Comment	n			
bad				

Create a new post					
140 characters					
$\bigcirc \bigcirc $					
2 2 2 2 2 2 3 6 6 6 6 9 6 6 2 2 2 2 2 3 6 6 6 9 6 2 2 2 2 2 3 6 6 6 6 6 6 6 6 6 6 6 6 6	•				

ClasSense Teacher Interface

Too much interrupting :-/ :-/ Posted at 8 minute by student37 ____0 C_0 Your response:

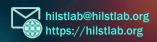

It's bad when someone start speaking beacause I get lost in the idea as it is difficult to hear people Posted at 8 minute by student37 I_0 C=0 Your response:

example is a little difficult to follow at times
Posted at 6 minute by student5

① ① ①

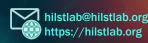
O

Your response:

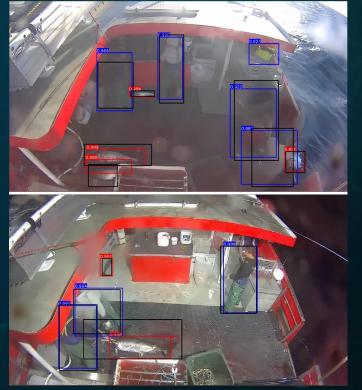


Evaluation Results

- A corpus of 2,143 posts on 9 entry level Information Technology topics was collected through the ClasSense backchannel system over a period of 4 months.
- Involved 35 students and 7 lecturers.
- Lecturers accept and prefer the morale graph based user interface over conventional ones.
- Students agree that the system not only makes their feedback an important part of the class but also increases their interactions with lecturers.
- The general applicability of the tool lends itself to many other types of contexts.



ENVIRON MENT


- Automated catch event detection for longline fishing, 2018 -
- Detection of fluoro- surfactants PFOA using a smartphone-based portable device, 2017-2018

Sustainable Harvesting of Marine Resources

- Electronic Monitoring (EM) systems use on-board cameras to observe fisheries operations.
- Manually analysing the large volume of video data captured is very timeconsuming.
- We developed a deep learning solution for identifying catch events automatically.

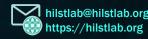
Sustainable Harvesting of Marine Resources

Fish catch counting •---

Fish detection & classification

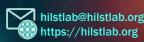
Fish trajectory via tracking

hilstlab@hilstlab.org https://hilstlab.org



Detection of fluoro-surfactants

- Fluoro-surfactants like PFOA/PFOS/PFAS are highly toxic.
- They come from industrial and institutional cleaning solutions.
- They are currently detected globally in virtually all life forms and environments.
- Detection and analysis is time-consuming, expensive and must be carried out in professional laboratories with cumbersome instruments.
- We developed a smartphone-based portable reading kit that allows quick, accurate analysis in the lab or field.

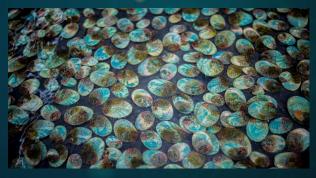


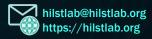
Detection of fluoro-surfactants

а	b		C	
RECORD NEW SAMPLE	Record Sample Place the sample in the measuring kit and press the "Record" button.		7 ⊿i 26% ≞ 11.38 am SAMPLE DETAILS SUMMARY 390 ppb 3/04/2017 11:16:01 AM RGB: (18, 22, 171) A1: 157 A2: 0.903381642512077 A3: 0.4783 A4: 0.669 Location: -32.091259, 151,704995	
CALIBRATION				
REVIEW PREVIOUS SAMPLES		Record	Location: -JZ.091259, 151.704995 OPERATIONS View on Map Opens Google Maps to the location at which this sample was recorded (if applicable).	
HELP			Update Calibration Replaces the calibration data from the time the sample was recorded with the device's current calibration.	
CONTACT US			Deletes this sample from the database.	

A video on using the App https://www.youtube.com/watch?v=8khPuX3r5l8

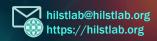
AQUACUL TURE


 Automated estimation of greenlip abalone mass using image analysis, 2021 -

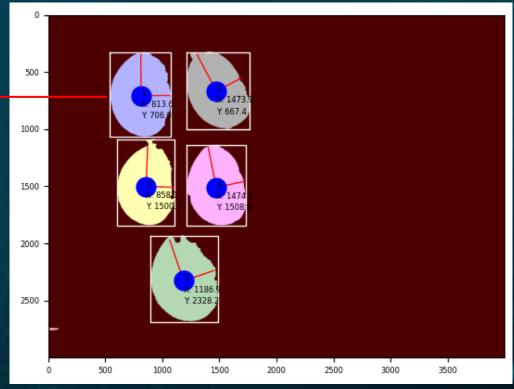


Automated estimation of greenlip abalone mass

- Abalone mass data is important for calculating daily feed intake, adjusting stocking density, grading, optimising use of facilities, and controlling water quality.
- Current way for measuring length and weight is time-consuming, costly, laborious and invasive.
- We are exploring an automated noninvasive way using computer vision and software technologies.



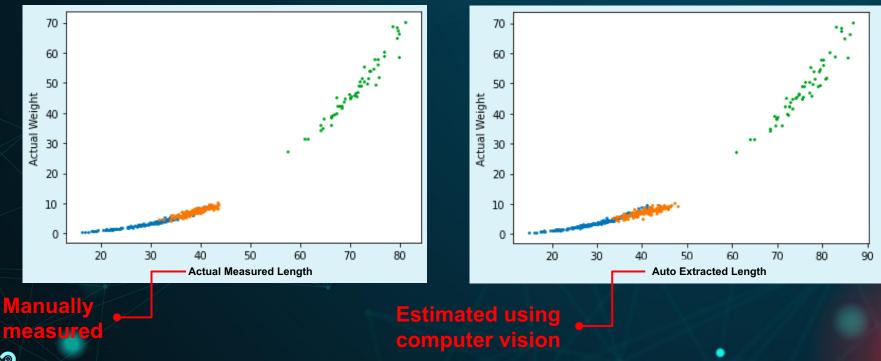
Acquisition of Training Data for Machine Learning



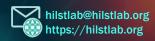
Automated Data Extraction using Computer Vision

Height, width, and area

A total of 404 clean labelled sample to use for machine learning



Automated ML Model Close to Ground Truth



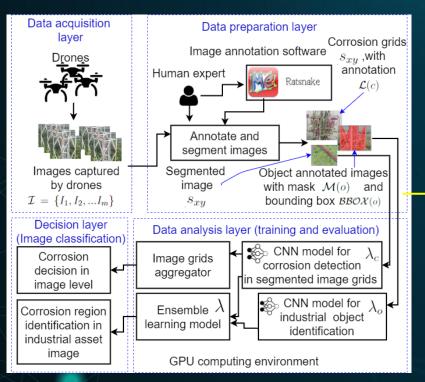
hilstlab@hilstlab.org https://hilstlab.org

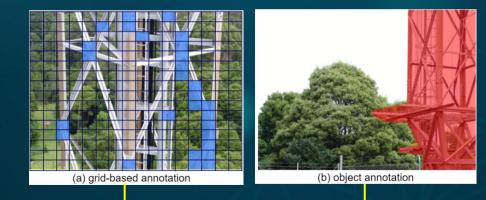
TELECOM

06

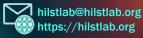
Cost of Corrosion

- The problem of corrosion may cost Australia up to \$32 billion annually.
- In most cases, inspections are conducted manually which can be slow, hazardous, expensive and inaccurate.
- We developed an AI-based automated solution utilising real-world high-resolution unaltered images captured by drones in industrial and real-world settings to identify corrosion in industrial structure such as telecommunication tower.
- Limited existing research and only for metallic surfaces.



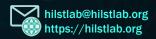


ilstlab@hilstlab.org ttps://hilstlab.org



A Novel Deep Learning Ensemble Framework

Compared to single model, deep learning ensemble models largely remove the false positives and increase accuracy to 93.80% (from 86.28%) with precision of 88% (from only 53.42%)


THANKS!

Do you have any questions?

hilstlab@hilstlab.org https://hilstlab.org +61294659366

CREDITS: This presentation template was created by **Slidesgo**, including icons by **Flaticon**, and infographics & images by **Freepik**.

Please keep this slide for attribution.

